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nonlinear evolution, and B is the M 3 N dimensional
noise term, which is a functional of f, and multiplies anA robust semi-implicit central partial difference algorithm for the

numerical solution of coupled stochastic parabolic partial differen- N dimensional real or complex Gaussian-distributed sto-
tial equations (PDEs) is described. This can be used for calculating chastic field h. All terms in these equations are assumed
correlation functions of systems of interacting stochastic fields. to be evaluated at the same point in the independent vari-
Such field equations can arise in the description of Hamiltonian

able t. The functional notation [f] denotes an arbitraryand open systems in the physics of nonlinear processes, and may
functional dependence on the fields [f], not necessarilyinclude multiplicative noise sources. The algorithm can be used

for studying the properties of nonlinear quantum or classical field evaluated at the same location x (even for field theories
theories. The general approach is outlined and applied to a specific derived from local interactions), generically denoted as x.
example, namely the quantum statistical fluctuations of ultra-short The stochastic fields h(t, x) are generally delta-correlated
optical pulses in x (2) parametric waveguides. This example uses a

in t, although not always in x, so thatnon-diagonal coherent state representation, and correctly predicts
the sub-shot noise level spectral fluctuations observed in homodyne
detection measurements. It is expected that the methods used will khi(t, x)hi9(t9, x9)l 5 d(t 2 t9)Cii9 (x, x9)

(1.2)be applicable for higher-order correlation functions and other physi-
cal problems as well. A stochastic differencing technique for reduc- khi(t, x)h*i9 (t9, x9)l 5 d(t 2 t9)Cii9 (x, x9).
ing sampling errors is also introduced. This involves solving nonlin-
ear stochastic parabolic PDEs in combination with a reference
process, which uses the Wigner representation in the example pre- One of the most well-known examples of this type of
sented here. A computer implementation on MIMD parallel architec- stochastic partial differential equation is the time-depen-
tures is discussed. Q 1997 Academic Press dent Ginsburg–Landau [4] equation with a stochastic

source. This is commonly used to describe systems with
critical-point phase-transitions, like super-fluids, lasers,

I. INTRODUCTION
and similar physical systems. The stochastic equation has
the form (for a single field f) ofStochastic partial differential equations are a class of

differential equations with important applications. Sto-
chasticity in the description of physical systems can arise ­f

­t
(t, x) 5 e=2

x f 1 Af(1 2 u f u2) 1 Bh(t, x), (1.3)
from both nonlinear processes and external noise sources.
These equations provide a description of interesting and
complex physical processes involving interacting fields [1]. where the complex stochastic field h(t, x) is equivalent to
The system may be closed or interacting with reservoirs, two uncorrelated real Gaussian stochastic fields with equal
and the stochastic equations, if derived from an underlying variances. Thus, the only non-vanishing correlations of the
Fokker–Planck equation, may have delta-correlated noise complex noise fields in this case, are
sources. A generic form of the stochastic differential equa-
tion or SDE [2, 3] addressed here is: kh(t, x)h*(t9, x9)l 5 d(t 2 t9)d(n) (x 2 x9). (1.4)

Here the transverse variable x is defined in an n-dimen-­

­t
f(t, x) 5 L[f] 1 A[f] 1 B[f] ? h(t, x), (1.1)

sional real space, and the stochastic noise sources are delta-
correlated in all space-time dimensions. This is generally
only an approximation: the above equation is often ob-where f is an M-dimensional complex field vector, L repre-

sents some linear partial differential operators, A is the tained as a limiting form, valid when all other time and
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distance scales are much larger than the correlation times integration step sizes, giving a scheme estimated to be
at best fourth-order in the deterministic part. Finally, weand correlation lengths of the stochastic term. In this type

of situation, it is most appropriate to use the Stratonovich introduce methods to solve the coupled nonlinear stochas-
tic partial differential equations using distributed comput-form of Eq. (1.1), and we will use this type of stochastic

integral throughout. ing techniques involving message-passing that produce the
desired ensemble averages. As an example, improvementsAs well as treating the usual classical field systems, the

set of equations given by Eq. (1.1) can be used to describe in implementation are demonstrated via the use of stochas-
tic trajectories in parallel, with the PVM (Parallel Virtualthe evolution of interacting boson quantum fields [5]. The

ability to describe the dynamics of quantum fields using Machine) public-domain message-passing library [14].
appropriate stochastic processes has become an important
tool in understanding interacting boson systems. These

II. IMPLICIT PROPAGATION ALGORITHMSinclude the dynamics of quantum solitons [6], parametric
amplifiers [7], and possibly even Bose–Einstein conden-

A. Stochastic Differential Equationssates [8]. For these reasons, we introduce an example to
illustrate the stochastic techniques which comes from the The numerical solution of stochastic differential equa-
nonlinear quantum optics of two fields with a nonlinear tions has generally received less attention in the literature
parametric coupling. This has applications to the propaga- than has the equivalent problem with non-stochastic
tion of intense pulses in nonlinear waveguides. The coher- sources. In particular, the limit of small step-size is gener-
ent-state representations described in the example given ally not the same in the two cases, since the standard
here therefore illustrate an important technique for solving deviation of the integrated noise source increases relative
systems with large numbers of interacting bosons. The to the step-size in this limit. The reason for this is that the
numerical methods employed to solve the resulting differ- noise-sources in the equations we treat here are infinitely
ential equations provide the background to enable the wide-band. This results in problems with using the normal
reader to adapt the techniques to other systems. arguments about continuity and differentiability of terms

A number of algorithms are known for solving problems in the equations.
involving ordinary stochastic differential equations [9, 10]. As a well-known illustration of this, we note that there
In general, since the stochastic term is usually non-differ- are two forms of stochastic calculus in common use. In
entiable, strategies that are appropriate for ordinary differ- one, all derivatives are calculated at the current point
ential equations need modification in the case of stochastic in time, prior to a step forward. This is called Ito calculus.
equations. Similarly, techniques that might work very suc- In the second, all derivatives are calculated implicitly,
cessfully in non-stochastic partial differential equations, at the center of a step forward in time. This is called
may not be applicable in stochastic partial differential Stratonovich calculus. Unlike conventional differential
equations, for the same reason. The work presented in this equations, these two procedures do not result in identical
paper is formally derived from a semi-implicit stochastic limiting equations. Instead, they give rise to generally
method [9], which has proved successful in treating ordi- quite different looking equations in the small step-size
nary stochastic differential equations owing to its good limit. The first form is often used by mathematicians,
stability properties, combined with a relatively low discreti- as it has some useful theoretical properties. To many
zation and sampling error. In essence, we combine the idea physicists, the second form is a preferred one, as it arises
of split operators, which are frequently used to solve partial as the natural limit of a set of equations driven with
differential equations [11], with a semi-implicit stochastic colored noise sources, in the limit of large bandwidth.
method. This general approach has been used to derive We note that it is always possible to transform from
existence theorems for stochastic partial differential equa- one type of calculus to the other.
tions [12], and is more robust in terms of stability than As well as having conceptual advantages for the physi-
Euler techniques [13] discussed in the recent literature. cist, the Stratonovich calculus also has the virtue that vari-

We also introduce some further innovations that are able-changes simply follow the rules of usual calculus. Ac-
useful in practical implementations of partial stochastic cordingly, we will use this stochastic calculus throughout.
differential equations. Stochastic differencing techniques This does not rule out Ito equations, but rather means they
can be employed when a given nonlinear problem is closely should first be transformed to the Stratonovich form.
related to a simpler equation that can be treated using The simplest type of SDE has no partial derivatives, and
other techniques. The purpose of stochastic differencing can be written in Stratonovich calculus as
is to reduce sampling errors by focusing the stochastic
method on the difference field, rather than the total field.
At low stochastic noise levels, a deterministically efficient ­

­t
x(t) 5 A(t, x) 1 B(t, x) ? z(t), (2.1)

solution scheme is obtained by combining two different
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where Here the deterministic term A is now replaced by the
deterministic term of the Ito [16] calculus, which is

kzi(t)zi9(t9)l 5 di,i9d(t 2 t9). (2.2)

AITO
i (t, x) 5 Ai(t, x) 1

1
2 On Cinn(t, x). (2.8)This equation can be treated as an ordinary differential

equation with continuous, differentiable source terms, pro-
vided an infinite bandwidth limit is taken at the end of the
calculation. However, the limit of infinite bandwidth is This relationship demonstrates the operational meaning
essential, and must be utilized prior to the limit of small of the Ito calculus; it is equivalent to a weakly convergent
step-size. With this in mind, time is divided into a lattice explicit Euler algorithm for the stochastic equation. Both
of discrete points tj. The derivative term for each step from these explicit algorithms are often unstable numerically,
tj to tj11 can be evaluated by approximating the variable x as they do not correspond to efficient techniques for inte-
using a Taylor expansion around some point tj 5 grating the deterministic part of the equation. Thus, they
(1 2 «)tj 1 «tj11. Next, the resulting approximate equation are particularly unsuitable for stiff numerical problems.
is solved in the time interval tj to tj11, with initial condition The weakly convergent, or Ito–Euler method, has the addi-
x 5 xj 5 x(tj). If a first-order Taylor expansion is used, tional disadvantage that weak convergence often results
the equations that result are exactly soluble in differential in a large sampling error.
form; they result [9] in a family of numerical algorithms An alternative technique within this general class of
that are parameterized by «. Each algorithm generated this Taylor-expansion methods is the semi-implicit technique
way has both a strongly convergent form (which includes obtained when « 5 1/2. Once more there are both weakly
second-order correlations of the noise terms), and an asso- and strongly convergent methods. For a large class of sto-
ciated weakly convergent form, which only converges sto- chastic processes with commutative noise (i.e., Cinn9 5
chastically, on averaging over an ensemble. Cin9n), the weakly and strongly convergent derivations give

One commonly used algorithm is the explicit Milstein identical algorithms, with
[15] form, with « 5 0, so that the functions are evaluated
at the starting-point:

Dxi, j 5 Ai (tj, xj)Dt 1 O
n

Bin(tj, xj) DWn, j , (2.9)

Dxi,j 5 Ai(tj, xj)Dt 1 O
n

Bin(tj, xj)DWn,j

(2.3)
where the derivative terms on the right-hand side are all

1 O
n
O
n9

Cinn9(tj, xj)DWnn9j. evaluated at the midpoint in time: tj 5 (tj 1 tj11)/2. Since
the original approximation for x involved linearizing in the
interval in question, the midpoint value xj is then obtainedHere the novel features are the noise integrals, de-
by an implicit equation:fined by

xj 5 (xj 1 xj11)/2 5 xj 1 Dxj/2. (2.10)DWn,j 5 Etj11

tj
zn(t)dt, (2.4)

Thus, the equation for the time-evolution at the jth timeand the time-ordered noise correlations, defined by
step is now an implicit one, which involves solving for xj.
This can be carried out in a number of ways, although

DWnn9,j 5 Etj11

tj
Etj11

t
zn(t)z9n(t9)dt9dt. (2.5) simple iteration is often the easiest in practical examples.

B. Partial Stochastic Differential EquationsIn addition, there is a stochastic coefficient, given by

In general, partial stochastic differential equations can
be treated in an exactly analogous way to ordinary stochas-Cinn9(tj, xj) 5 O

i9
Bi9n (tj, xj)

­

­xi9
Bin9(tj, xj). (2.6)

tic differential equations, simply by expanding the fields
to be integrated in an appropriate basis set of mode func-
tions. In this way, a new family of algorithms can be gener-If the stochastic correction term is ensemble-averaged a
ated, corresponding to the explicit and implicit formsweakly-convergent algorithm is regained:
treated above. It is necessary to decide precisely which
type of mode expansion to use, in order to specify theDxi,j 5 AITO

i (tj, xj)Dt 1 O
n

Bin(tj, xj)DWn,j. (2.7)
algorithm. An obvious first choice is to use a wavelet basis,
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consisting of square modes U(x 2 xm) centered on a trans- f(tj11 , xm) 5 2f(n)
jm 2 f(tj , xm). (2.17)

verse lattice of points xm, so that

This is used in preference to a direct Newton root-finding
fi(t, x) Q O

m
U(x 2 xm)fi(t, xm). (2.11) method requiring evaluation of steps involving the Jacob-

ian of the drift and noise terms, since this would add consid-
erable complexity to the algorithm.

Each ordinary stochastic equation algorithm can then
be rewritten in terms of the wavelet basis, to give a partial

III. FOURIER TRANSFORM METHODSdifferential equation algorithm. The new ingredient is that
the transverse cells must be averaged over at each step. A. Linear Propagation
Choosing the semi-implicit algorithm, this leads to an equa-

An alternative basis is the Fourier expansion basis, whichtion for the mean increment after cell-averaging:
has the advantage that the set of functions employed has
no discontinuities. While this can simply be used directlyDf(tj, xm) 5 (Lmm9 ? fjm9 1 A[fjm])Dt

(2.12) as in the above section, it is also possible to use a Fourier
1 B[fjm] ? DWjm. expansion in an interaction picture approach, which results

in a rather efficient implementation. We will restrict our
Here the term Lmm9 is simply the transverse discretization attention here to (1 1 1) dimensional equations. Higher
of the linear partial differential operator. If the cell volume dimensional problems can be treated by using higher di-
is written as mensional FFTs or eigenfunction expansions. Assuming

that L is diagonal in the field indices, the linear evolution
for each vector field component can be expressed in aV(Dxm) 5 Dx1mDx2m . . . , (2.13)
standard form as

then the transverse noise integrals are

L[f(t, x)]i 5 Onmax

n50
in11 b(n)

i

n!
­n

­xn fi(t, x). (3.1)
DWn,jm 5

1
V(Dxm)

Etj11

tj
Exm11

xm

hn(t, x) dt dx. (2.14)

A Fourier transform basis is defined as
The midpoint fields can then be estimated to lowest

order by the implicit formula
f̃(t, k) 5 EL/2

2L/2
f(t, x)eikx dx

(3.2)fjm Q (f(tj , xm) 1 f(tj11 , xm))/2. (2.15)

f(t, x) 5
1
L O f(t, k)e2ikx,

The above result defines a semi-implicit algorithm, involv-
ing the evaluation of a set of nonlinear equations at
each step. where the Fourier transform operator is denoted T.

The boundary terms which can occur in the FourierIn order to evaluate the semi-implicit step numerically, it
is often most convenient to start with an explicit Ito–Euler transform are usually assumed to be negligible. This re-

quires the field and its first derivative in x to be small onintegration step of length Dt/2. This simple method is rather
unstable for stochastic differential equations in general [9], the boundary at x 5 6L/2: or else f must be periodic, since

typical numerical implementations of Fourier transformsand should not therefore be used on its own. Accordingly,
to improve on the Ito–Euler integration step an iterated involve a finite domain. Absorbing boundaries can be used

to prevent noise from wrapping around the boundaries. Inroot-finding mechanism can be used. One defines the (n
1 1)st iterate as the case of some types of representation of quantum fields,

noise sources must then be added, to preserve commuta-
tion relations whenever the fields explicitly contain vacuumf(n11)

jm 5 fj(tj , xm) 1 [(Lmm9 ? f(n)
jm9 1 A[f(n)

jm ])Dt
(2.16) noise. In practice, Fourier transforms are computed using

1 B[f(n)
jm ] ? DWjm]/2, a finite sample discrete Fourier transform which implicitly

enforces periodicity, and also introduces a momentum cut-
off, corresponding to a cell-size of Dx. The correspondingwhere initially, f(0)

jm 5 f(tj , xm). About n 5 3 or n 5 4
iterations are usually sufficient for convergence at small discrete Fourier transform operator is denoted TDx .

Equation (3.2) forms the basis of a propagator for thestep-sizes. The final nonlinear step operator acting on a
field f is linear evolution by direct integration, allowing a linear
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evolution operator UL(t) 5 T 21[PL(t)T [f]] to be con- If the original noise terms are delta-correlated in space,
then the momentum-space noise terms are correlated ac-structed, where the propagator in Fourier space is
cording to

hPL(t)ji 5 exp Fi Onmax

n50

b(n)
i kn

n!
tG5 eiui(k)t. (3.3) khn(t, kl)hn9(t9, k9l )l 5 Ldn,n9d(t 2 t9)dkl,2kl9

. (3.6)

Thus, PL(t) is the exact linear propagator for the evolution As usual, we choose the x-lattice and k-lattice to be conju-
of the transformed field at wavevector k, under the action gate to each other, to allow inverse Fourier transforms to
of the linear operator L. In typical physical applications, exist. Nonlinear terms involving products in the x-domain
this may include the linear dispersion of the propagation are transformed to convolutions in the Fourier domain.
equation along with phase-mismatch and damping. These must be truncated to a finite lattice, which is

The existence of this solution means that the original achieved by evaluating the x-domain products only at the
equation can be rewritten in a type of ‘‘interaction picture’’ conjugate lattice points. Similarly, the noise terms must be
relative to a reference time t0 (using field theory terminol- averaged over each cell.
ogy), as This leads to an equation for the mean increment in

the form
­

­t
f̃I 5 PL(t0 2 t)T [A[f(t)] 1 B[f(t)] ? h(t, x)], (3.4)

Df̃I(tj , kl) 5 Etj11

tj
dt PL(tj 2 t)TDx[A[fjm]

(3.7)
where the linear term is eliminated through the replace- 1 B[fjm] ? hm(t)],
ment of f by the interaction picture field f̃I , so that
f(t) 5 T 21[PL(t 2 t0)f̃I(t)].

where fjm 5 f(tj , xm) 5 fI(tj , xm). This equation can beIn this form, the equation can be regarded as essentially
readily simplified by noting that the temporal average ofan ordinary differential equation (or integro-differential
the deterministic part is Dt(k) 5 Dt sinc(um(k)Dt/2). Hereequation) which can be treated using the semi-implicit
it should be clear that for small enough step-size, Dt(k) 5technique [9]. As stated earlier, time is divided into a lattice
Dt. The effect of the temporal integral is to filter largeof discrete points tj , and the derivative term for each step
momentum components in the nonlinear response, whenfrom tj to tj11 is evaluated by approximating the field on
the step-size is large. Similarly, the average of the stochasticthe right-hand side by its value at the midpoint in time tj term is

5 (tj 1 tj11)/2. In every successive step the reference time
is set to t0 5 tj , so that the midpoint derivative is identical
(apart from the linear terms) in either picture of the evo- DWT

i, jm(k) 5 O
n
Etj11

tj
dteiui(k)(tj2t)Bin[fjm]hn,m(t). (3.8)

lution.

B. Transverse Lattice This also has a filtering effect; effectively, a random phase
is applied to each Fourier-transformed noise component.The interaction picture presented above does not take
This filters the phase-dependent noise terms, but has nointo account the fact that a finite lattice of modes kl must
effect on phase-independent noise.be used in a practical numerical implementation, together

The complete interaction picture result iswith an equivalent lattice in the x-domain. The fields are
integrated with a momentum cut-off, and therefore can be
effectively sampled at each lattice midpoint. However, the Df̃I(tj , kl) 5 TDx[A[f(tj , xm)]]Dt(kl) 1 DWT

jm(kl). (3.9)
stochastic term has no intrinsic momentum cutoff, and
must be treated more carefully. In order to treat this, we

For simplicity, it is often preferable to employ a small step-
introduce a discrete Fourier transform defined on a discrete

size Dt, so that for Dtu(kmax) ! 1 the filtering terms are
transverse lattice with lattice spacing Dx, where

eliminated. More precisely, at small step-size, the result-
ing sinc function gives corrections of order (Dt)3, which

TDx[fi](t, kl) 5 Dx O eiklxmfi(t, xm) can be neglected. The noise expression then reduces to
DWT

i, jm(k) 5 onBin[fjm]DWn, jm , where DWjm is a cell-aver-
TDx[hn](t, kl) 5 Dx O eiklxmhn,m(t) (3.5) aged noise, as defined in Eq. (2.14).

In this case, the step can be written in an approximate
5EL/2

2L/2
hn(t, x)eiklx dx. form applicable in the time-domain, in terms of the central
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fields fjm in each lattice cell, as An overall semi-implicit integration step including prop-
agation can be denoted by the total Fourier domain propa-
gator PT (Dt, Dx), which is then of the formfI(tj 1 Dt, xm) 5 fI(tj , xm) 1 A[fjm]Dt

(3.10)
1 B[fjm] ? DWjm . PT (Dt, Dx) 5 PL(Dt/2)TDxUI(Dt, Dx)T

21
DxPL(Dt/2). (3.12)

In addition, there must be a specification of how to The general approach described above allows the inte-
evaluate the midpoint fields. For ease of implementation, gration of parabolic partial differential equations with
we choose to estimate the midpoint fields to lowest order multiplicative noise. Nonlinear drift terms along with
by averaging the interaction picture fields, so that fjm Q multiplicative noise in the Stratonovich form of Eq. (1.1)
[fI(tj , xm) 1 fI(tj11 , xm)]/2. The overall result defines a can be treated using the semi-implicit integration method.
semi-implicit algorithm at small step-size; more precise The method can also treat the description of interacting
treatments should include the transverse filters obtained fields with non-Markovian reservoirs. For such systems,
above. In practice, it is necessary to evaluate a set of nonlin- starting from Gaussian white noise one can generate noise
ear equations for each step. This can be achieved in a sources with complicated temporal correlation functions.
number of ways, although iterative techniques are usu- These can subsequently appear in multiplicative noise
ally convenient. terms and be integrated along with the nonlinear drift

Generally the nonlinear field term A is evaluated in the terms. The method has been successfully applied to the
x-domain as indicated above, although field convolutions propagation of coherent quantum solitons in silica fiber
involving x can be efficiently evaluated using the convolu- [6, 18, 19] and to the generation of non-classical light in
tion property of Fourier transforms. For example, the abil- parametric waveguides [20].
ity to perform calculations in the Fourier domain can be
used as a convenient method for including the effects of IV. NUMERICAL ERRORS
a nonlinear response that is non-local in x. This form ap-

As always, a crucial point in numerical integration is thepears in the theory of polariton propagation in Raman
control and estimation of numerical errors. In stochasticactive waveguides as used to describe optical solitons in
differential equations (either ordinary or partial), theresilica fiber [6]. Nonlinear processes often result in stochas-
are two distinct types of error, namely sampling errors andtic equations which have multiplicative noise sources. It is
discretization errors. These have quite different origins,usually simplest to evaluate the multiplicative noise in the
and need to be estimated and controlled individually.x-domain along with any nonlinear drift components. How-

ever, it is also possible to include the noise in the Fourier
A. Sampling Errorsdomain if for example the noise correlation functions are

considerably simpler in the Fourier domain. Here the non- Sampling errors are a very important part of stochastic
linearity and stochasticity is included in the x-domain, equations, because they are often the largest single error
for definiteness. component. In general, any fluctuating or noise-driven

The semi-implicit step can be evaluated either exactly, quantity will be very susceptible to sampling error, which
if the nonlinear equations are soluble, or iteratively, if they is due to the estimation of correlations or moments using
are not. The procedure at this stage is then identical to only a finite, rather than an infinite set of random trajector-
that in Eq. (2.16), except that the differential operator L ies. Here we assume that the appropriate pseudo-random
is omitted, due to the use of the interaction picture. This numbers can be generated with ideal properties. In these
allows a more efficient implementation. The other differ- calculations, the Gaussian random numbers are generated
ence is that the propagated interaction picture field is used using the rectangular Box–Mueller technique, combined
as the initial condition, so that initially, f(0)

jm 5 fI(tj , xm). with a pseudo-random number generator. We used the
The final nonlinear step operator acting on a field fI in ranmar routine described by Marsaglia et al. [21]. Even

the interaction picture is with perfect random number generators, the use of a finite
ensemble of N trajectories typically leads to a standard
deviation in the result that scales at best with 1/ÏN . ThisfI(ti11 , xm) 5 2f(n)

jm 2 fI(ti , xm)
(3.11) relatively slow convergence as the number of stochastic

5 UI(Dt, Dx)[fI(ti , xm)]. trajectories increases typically results in much larger errors
than those due to discretization, which can be controlled
rather well in most cases. An important aspect of samplingThis is used in preference to a direct Newton root-finding

method requiring evaluation of steps involving the Jacob- errors is that these are often much smaller in strongly
convergent algorithms than in weakly convergent algo-ian of the drift and noise terms, since this would add consid-

erable complexity to the algorithm. rithms.
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One way to reduce sampling errors is through the use were employed. There are also some possible techniques
for reducing the discretization error, using extrapolationof stochastic differencing. The concept of stochastic differ-

encing is a very simple one, although not always possible to methods. We note that the local discretization error [9] in
the stochastic terms is of order (Dt)3/2, which means thatimplement. It is sometimes the case that a given correlation

function or mean value kC [f]l can be compared to a similar conventional extrapolation schemes must be employed
with caution.correlation evaluated from a much simpler stochastic refer-

ence process, fR . Provided that both f and fR can be For ordinary differential equations, the second-order
midpoint method can be extrapolated to zero step-size,generated with identical stochastic noise terms, this pro-

vides a technique for reducing sampling errors through a giving an algorithm known to be fourth-order by combin-
ing results from two different step sizes [17]. We can applysubtraction scheme.

Instead of computing the N-trajectory average kC [f]lN the technique here at the level of the full second-order
split-step form rather than at the nonlinear step only. Thisdirectly, the difference kC [f] 2 C [fR]lN is computed.

Suppose that the exact value of kC [fR]l is already is useful if it is essential to reduce the deterministic propa-
gation error, and the stochastic noise term is very small.known, or can be calculated to high accuracy using some

other technique. Then, the numerical estimate of kC [f]l However, this procedure will not always reduce the sto-
chastic error, as the stochastic error is not of second order.is obtained from the obvious approximation that
Using the Baker–Hausdorff formula one has

kC [f]l Q kC [f] 2 C [fR]lN 1 kC [fR]l. (4.1)

exp(tH1) exp(tH2) 5 exp Ht(H1 1 H2) 1
t2

2
[H1 , H2]

(4.2)
This is not a linearization approximation, but rather an

alternative to the usual sampling estimate in which the
exact average over an infinite population is equated with

1
t3

12
([H1 , [H1 , H2]] 1 [H2 , [H2 , H1]]) 1 ...Jthe population average over a finite sample. The advantage

of a stochastic differencing method, if applicable, is that
sampling errors can be greatly reduced when the reference which can be used to expand the symmetrized operator
calculation gives very similar results to the main stochastic exp(tH1/2) exp(tH2) exp(tH1/2) to give
process of interest.

In practical terms, it is not essential that the exact value
of kC [fR]l is known analytically. This is obviously prefera-

exp(tH1/2) exp(tH2) exp(tH1/2) 5 exp Ht(H1 1 H2)
(4.3)

ble, but not really necessary. Instead, we will show an
example in which the correlation function of the reference
process is calculated by using a completely different sto-

1
t3

3
[H1 1 H2 , [H2 , H1]] 1 O(t5)J.

chastic implementation, which can be carried out more
efficiently. In this case, there are two distinct and equiva-
lent routes to computing the reference correlation. One We use this as a basis for the extrapolation as
employs a stochastic reference process, with identical sto-
chastic noise terms to the main calculation, to allow a low-
noise difference term kC [f] 2 C [fR]lN to be calculated. Pext 5

4PT (Dt, Dx) 2 PT (2Dt, Dx)
3

. (4.4)
The second route to calculating the reference correlation
in this case is also numerical, but carried out using a more
precise technique that is only available for the high-accu- To test convergence, it is useful to compare results ob-
racy reference calculation of kC [fR]l. tained using both fine and coarse lattices. The propagators

then become
B. Discretization Errors

Discretization errors are caused by the finite step-size
Pcoarse 5

4PT (Dt, Dx) 2 PT (2Dt, Dx)
3

(4.5)employed in the numerical lattice. As this is a complex issue
in stochastic problems, the most conservative procedure is
to solve the equation on two distinct lattices, using identical Pfine 5

4PT (Dt/2, Dx/2) 2 PT (Dt, Dx/2)
3

. (4.6)
noise sources. Noise on the fine lattice is averaged over
the t- and x-lattices to form the noise for the coarse lattice.
This allows an estimate of discretization error to be ob- It should be emphasized that this particular refinement

is only applicable to calculations with extremely small noisetained, without sampling error artifacts being intro-
duced—as would occur if two independent noise-fields sources, so the discretization error is mostly deterministic
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in origin. If the stochastic discretization error is large, it experiments on ultra-short optical pulsed squeezing in
parametric waveguides can be calculated [20].may be better to employ an extrapolation of the form

The traveling-wave parametric amplifier is modeled here
as a nonlinear, dispersive dielectric waveguide whichPext 5 2PT (Dt, Dx) 2 PT (2Dt, Dx). (4.7)
allows propagation in the z-direction in single transverse
modes for both the fundamental (signal) and second har-

This assumes that the total propagating error is propor- monic (pump) and is orientated such that type I phase
tional to the cell-size, which is consistent with addition of matching for the x(2) process is dominant. The Hamiltonian
uncorrelated local errors each proportional to Dt3/2. used here is the same as appears in the earlier work of

Raymer et al. [22],
V. EXAMPLE—QUANTUM FIELD PROPAGATION IN

Ĥ 5 O
m

"g(1)
m â(1)†

m â(1)
m 1 O

m
"g(2)

m â(2)†
m â(2)

m

(5.1)

x(2) WAVEGUIDES

Non-classical light pulses produced in dispersive nonlin-
2

1
3

«0x(2) E d 3x : FD̂(1)(x)
«1

1
D̂(2)(x)

«2
G3

: ,ear media offer the possibility for improved large band-
width communication systems. It is necessary to study the
quantum statistical properties of these systems since quan-

where the notation : : represents normal ordering. The
tum noise can impose rather disappointing limits if poorly

electric displacements D(i)(x) in the nonlinear term are
understood. At a more fundamental level, theoretical pre-

expanded in terms of the boson field operators as
dictions of non-classical photon correlations provide a test
of the quantum theoretic and computational methods used
for describing quantum field propagation in dispersive non- D̂(i)(x) 5 i O

m
S«j"g9j k(i)

0

2L D1/2

â(i)
m u(i)(x) exp(ik(i)

m z)
(5.2)linear dielectrics, as evidenced by the prediction and obser-

vation of quantum solitons in optical fibers [6] and more
1 (hermitean adjoint),

recently photon number squeezing in the same system [19].
The use of quasi-probability densities in studying the where the frequency dependence of the parameters has

quantum statistics of light has provided an important tool been kept only for the phase-shift term exp(ik(i)
m z). The

in understanding the dynamics of quantum noise in non- electric permittivity at frequencies g1 and g2 are given by
equilibrium nonlinear systems. Even for a closed Hamil-

«1 and «2. The annihilation operators â(i)
m correspond to a

tonian system, a description in terms of a stochastic process mode with propagation constant
may not be necessary in order to be equivalent with quan-
tum theory. Whether noise arises in the initial conditions
and/or the evolution depends on the representation used k(i)

m 5 S«j

«0
D1/2 gj

c
1 mDk; m 5 2M, ..., M (5.3)

for the density operator. Typical examples from nonlinear
optics are x(2) and x(3) field interactions. In both these

with mode spacing Dk 5 2f/L. The mode volume is thencases, the normal and anti-normal ordered representations
defined by the normalized transverse mode function u(i)(x)have non-constant diffusion terms for the Fokker–Planck
and the length L of the medium. Here x represents theequation while the symmetrical ordering results in no diffu-
transverse coordinates. The mode frequencies g(i)

m are ap-sion term. This implies that multiplicative noise sources
proximate, corresponding to a second-order Taylor expan-are required in order for the SDE description to be equiva-
sion, so thatlent to the Fokker–Planck equation in the normal and anti-

normal ordered cases. This noise arises from the nonlinear-
ity of the system due to the photon transitions. In the large g(i)

m P gj 1 (mDk)g9j 1
1
2

(mDk)2g0j , (5.4)
photon number limit, a diffusion picture is a valid one but
for small photon numbers the quantum jump process from

where the derivatives g9j and g0j are with respect to k. Thiswhich the noise originates should be considered.
is easily extended to include higher-order dispersion ifTraveling-wave parametric amplifiers are phase-sensi-
desired. The procedure for transforming to local field oper-tive amplifiers where in general three-wave mixing pro-
ators has been given in the work of Drummond and Cartercesses via a x(2) nonlinearity include parametric down-
[23]. The local field operators are defined on a lattice ofconversion, second-harmonic generation and effective x(3)

length L with 2M 1 1 points byprocesses via cascaded x(2) interactions. This example de-
scribes an efficient algorithm for calculating quantum sta-
tistics of parametric down-conversion. In particular, the âl 5

1

Ï2M 1 1
OM

m52M
â(1)

m exp S i2fml
2M 1 1D (5.5)

sub-shot noise level spectral fluctuations observed in recent
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so that the lattice cell denoted by l corresponds to longitu-
1

x*l
8

(1 2 usu) O
l

­3

­a2
l ­b*l

1
xl

8dinal position zl 5 lDz 5 lL/(2M 1 1). Local operators b̂l

are defined analogously from the â(2)
m operators. The Ham-

iltonian can be written in an interaction picture, which (1 2 usu) O
l

­3

­a*2
l ­bl

GW(a, b; s, t),
removes the carrier frequency oscillations, as

(5.10)
Ĥ/" 5 O

l
O
l9

Dga
ll9â†

l âl9 1 O
l
O
l9

Dgb
ll9b̂†

l b̂l9 (5.6)

where xl 5 xg91Ïg92/Dz and the phase-mismatch has been
incorporated into Dgb

ll9 . The above derivation of the evolu-
1 S1

2
ix*g91 Sg92

DzD1/2 O
l

â†2
l b̂le2i(2k(1)

0 2k(2)
0 )zl 1 h.aD , tion equation for W(a, b; s, t) relies upon the use of partial

integration, and therefore assumes the distribution is suffi-
ciently rapidly vanishing at the phase-space boundaries(5.7)
where ualu, ublu R y. This condition may not always hold
at long times and small damping rates, and must be checkedwhere the definition of Dgll9 follows directly [23] from
numerically when using phase-space distributions of thissubstituting Eq. (5.5) into Eq. (5.1) and
type.

VI. STOCHASTIC FIELD EQUATIONSx 5
«0x(2)k(1)

0

«1
S"k(2)

0

2«2
D1/2 E d 2x(u(1)(x))2(u(2)*(x)). (5.8)

A Fokker–Planck equation with second-order deriva-
tives can be transformed to a set of stochastic differentialHere the s-parameterized quasi-probability distributions
equations, provided there is a positive semidefinite diffu-of Cahill and Glauber [24] are used which are denoted by
sion which Eq. (5.10) does not provide explicitly. However,W(a, b; s, t). With these distribution functions, s-ordered
this can be achieved in two distinct ways.products kh(a†)namjsl can be obtained by integration in the

In the normally ordered (or anti-normally ordered)complex plane according to
case, there is no third order diffusion term. In the
case s 5 1, a new representation called the positive-P
representation is obtained from the above Fokker–Planckkh(a†)namjsl 5 E (a*)namW(a; s, t) d 2a. (5.9)
equation by the procedure of dimension-doubling, which
introduces new complex variables denoted a†

l , (b†
l ). These

The parameter s 5 1, 0, 21 corresponds to normal, are not necessarily the complex conjugate of al(bl) except
symmetric, and anti-normal ordered products and the in the mean. Thus, an evolution equation for the positive-
quasi-probability distributions P, Wigner, and Q functions, P distribution (s 5 1) can always be found such that it
respectively. The evolution equation for the s-param- has a positive semidefinite diffusion, by using the non-
eterized quasi-probability densities are obtained from uniqueness of the time development of W(a, b) corre-
the Louiville equation for the density operator [25], sponding to the original master equation [26]. Given
and are that such a diffusion matrix exists, and it is the noise

correlations of the SDEs which are the important prop-
erty, one can write down a convenient noise term with­

­t
W(a, b; s, t) 5 FO

l
2

­

­al
S2i O

l9

Dga
ll9al9 1 x*l a*l blD the appropriate correlations. There are no third order

derivative terms in the case of the positive-P representa-
tion, so no additional assumptions are needed to trans-

1 O
l

2
­

­a*l
S1i O

l9

Dga
l9la*l9 1 xlalb*l D form the Fokker–Planck equation into stochastic equa-

tions, except the requirement of vanishing boundary
terms. This can be checked numerically, simply by moni-

1 O
l

2
­

­bl
S2i O

l9

Dgb
ll9bl9 2

1
2

xla2
lD toring large-amplitude trajectories.

In the Wigner case with s 5 0, there are no second-
order derivatives (unless there is damping). Accordingly,

1 O
l

2
­

­b*l
S1i O

l9

Dgb
l9lb*l9 2

1
2

x*l a*2
l D if the third order derivatives are omitted, the equations

of motion are essentially classical, and all the quantum
noise enters in the initial conditions. However, the trans-
formation to a final truncated or ‘‘semi-classical’’ equation1 O

l
s

x*l
2

­2

­a2
l

bl 1 O
l

s
xl

2
­2

­a*2
l

b*l
is only approximate, since it requires the neglect of third
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order derivative terms. This approximation is justified ­c†

­j
5 Fz0

t0
S 1

g91
2

1

g92
D ­

­t
2 iz0(k(2)

0 2 2k(1)
0 )by the argument that, with large photon numbers, the

neglected terms are relatively small. The large photon-
number approximation is difficult to check directly, and

1
i
2

k02

uk01u
Sg92

g91
D2 ­2

­t 2G c† 2
1
2

f†2, (6.2)can lead to incorrect results if higher-order correlations
are calculated. One can compare results with the s 5
1 case, since the neglect of boundary terms in the positive-
P simulations is readily justified for the parameters used where j 5 z/z0 is the propagation distance scaled by z0

here. The equations do have another use, as we see and t 5 tv/t0 is the scaled time in the co-moving frame.
later. If the pump field c is treated classically, there are Here z0 5 uxC0u21 is the classical undepleted pump gain
no third order terms, which allows the Wigner theory length and t0 5 Ïz0k01 is the inverse phase-matching band-
to be used as a reference calculation in a stochastic width when C0 is the initial peak value of C. The noise
differencing approach. correlation is

Either type of equation can be transformed to treat
scaled photon flux amplitudes by defining

kz(j, t)z(j9, t9)l 5
1
n

d(j 2 j9)d(t 2 t9), (6.3)

where n 5 C2
0t0 is the parameter governing the systemfl 5 al Sg91

DzD1/2@C0

(6.1) size expansion.
In the Wigner representation the evolution of the field

f(j, t) is governed by Eq. (6.2) with s 5 0 provided thecl 5 bl Sg92

DzD1/2@C0 ,
parameter (n21/2) governing the system size expansion is
sufficiently small that the third-order derivatives in the
evolution equation for the Wigner function can be ne-

where f†
l fl and c†

l cl equal the number of photons per glected. This means that the photon number of the quan-
second passing the zl plane for signal and pump fields, tized pump pulse has to be sufficiently large and the propa-
respectively, scaled by a reference photon flux uC0u2. gation distances sufficiently short (j ! n1/2). This is in

We now transform to a co-moving frame at speed g91 contrast to the positive-P representation for which Eq.
and evaluate the terms involving Dgll9 which are related (6.2) is exact (in the absence of boundary terms), since the
to the discretized first and second derivatives with respect Hamiltonian is only quadratic in boson creation operators
to z. We retain only the first-order derivative in z in for the sub-harmonic field and linear for the pump field.
the co-moving frame to give continuum equations. This If the Hamiltonian does not include a quantized pump,
is achieved by first defining tv 5 t 2 z/v, k0j 5 d 2k/ then the dimensionless equations with s 5 0 correspond
dg2uk5kj

5 2g0j /v3, where t is the time measured in the exactly to the Fokker–Planck equation for W and give
laboratory frame and tv is the time measured in the co- identical results to the positive-P representation for a clas-
moving frame with speed v 5 g91 . The factor (k(2)

0 2 sical pump. We note that for the parametric amplifier there
2k(1)

0 ) accounts for any mismatch of phase velocities, while are no additional self-frequency shifts introduced by using
(1/g92 2 1/g91) accounts for group-velocity mismatch, and the Wigner representation, as in the case of the quantum
k0j accounts for group-velocity dispersion (GVD). Finally, nonlinear Schrödinger equation [18]. In the Wigner repre-
these equations can be cast into the following dimen- sentation the dynamics are restricted to the classical sub-
sionless form, space hf†, c†j 5 hf*, c*j so that the boundary conditions

at j 5 0 for a coherent state can be written (neglecting
the nonzero mean amplitude) as f(0, t) 5 Df(0, t), c(0,
t) 5 Dc(0, t), and­f

­j
5 2

i
2

sgn(k01)
­2

­t 2 f 1 f†c 1 sÏcz(j, t)

kDf(0, t)Df*(0, t9)l 5
1

2n
d(t 2 t9)

(6.4)

­f†

­ j
5 1

i
2

sgn(k01)
­2

­t 2 f† 1 fc† 1 sÏc†z†(j, t)

­c

­j
5 Fz0

t0
S 1

g91
2

1

g92
D ­

­t
1 iz0(k(2)

0 2 2k(1)
0 ) kDc(0, t)Dc*(0, t9)l 5

1
2n Sg92

g91
D d(t 2 t9),

where Df and Dc represent delta-correlated Gaussian sto-2
i
2

k02

uk01u
Sg92

g91
D2 ­2

­t 2G c 2
1
2

f2

chastic processes with a mean of zero.
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Using the semi-implicit integration method for Strato- f(j j 1 Dj, tm) 5 f(j j , tm) 1 f(n)†
jm c(n)

jm Dj
novich stochastic differential equations described earlier,

1 Ïc(n)
jm DWjm (6.10)an algorithm can be constructed for the case of the x(2)

interaction evolution equations. The positive-P stochastic c(j j 1 Dj, tm) 5 c(j j , tm) 2 (f(n)
jm )2 Dj/2.

equation for the field f(j, t) driven by the pump field c(j,
t) is given by Eqs. (6.2). Neglecting the linear evolution for After the interaction picture increment is calculated, the
the moment and writing the field coordinate t in discretized fields must be then propagated by linear transformations
form, the stochastic integral for the interaction picture field to the next cell location.
fI (averaged over a transverse lattice cell at low transverse
momentum) is VII. QUANTUM CORRELATIONS

A. Hybrid Wigner/Positive-P SimulationsfI(j j 1 Dj, tm) 2 fI(j j , tm)

The correct quantum theory including a quantized pump
5 Ej j1Dj

j j

dj9 Etm1Dt

tm

dt9[f†
I (j9, t9)cI(j9, t9) (6.5) is given by the positive-P representation, provided bound-

ary terms are negligible. For highly non-classical states the
1 ÏcI(j9, t9)z(j9, t9)] doubled dimensionality of the phase-space can result in

poor sampling statistics when calculating the squeezing
which is interpreted as the integral of a Stratonovich sto- spectrum. The Wigner representation on the other hand
chastic differential equation. In this case we could approxi- describes the dynamics exactly for a classical pump on the
mate the integral as reduced phase-space where the stochastic fields represent-

ing the Hermitian conjugate field are in fact exactly the
complex conjugate field. This fact can be utilized to providefI(j j 1 Dj, tm) 2 fI(j j , tm) 5 f†

jmcjmDj 1 ÏcjmDWjm ,
a reference calculation for stochastic differencing, which(6.6)
significantly improves the sampling statistics for the posi-
tive-P calculation with a quantized pump.

where the implicit approximation is used that the midpoint Instead of directly calculating the squeezing spectrum
values can be calculated from including the effects of pump depletion and fluctuations in

the positive-P representation, one calculates the difference
between the squeezing spectrum for a classical undepletedfjm 5

1
2

(fI(j j 1 Dj, tm) 1 fI(j j , tm)). (6.7)
pump and a quantized, depleted pump. The noise must
be the same in both positive-P simulations. The Wigner
representation is then used to calculate the squeezing spec-The noise terms have a correlation of
trum for a classical undepleted pump which is exact, as
explained above. The addition of the positive-P difference

kDWjmDWj9m9l 5
dj, j9dm,m9Dj

nDt
. (6.8) spectra and the Wigner spectra gives the correct quantum

statistics including quantized pump. The important feature
is that the sampling error is considerably smaller. The noise

The error in the drift component is improved to O(Dj3) source for the Wigner representation is typically only in
by using these implicit midpoint estimates as explained the initial conditions. However, for the positive-P repre-
earlier. In greater detail, the initial estimate of the midpoint sentation noise needs to be generated at each space-time
is an Ito–Euler step of length Dj/2 given in the interaction point, and the distribution function for a highly squeezed
picture by state is less compact than the Wigner distribution.

One can write down the appropriate reference stochastic
equations asf(1)

jm 5 fI(j j , tm) 1 (f†
I (j j , tm)cI(j j , tm)Dj

1 ÏcI(j j , tm)DWjm)/2 (6.9) ­fW

­j
5 2

i
2

sgn(k01)
­2

­t 2 fW 1 f*WcR
c(1)

jm 5 cI(j j , tm) 2 (fI(j j , tm))2 Dj/4.

­cR

­j
5 Fz0

t0
S 1

g91
2

1

g92
D ­

­t
1 iz0(k(2)

0 2 2k(1)
0 )The procedure for estimating the midpoint is iterated sev-

eral times to improve convergence, as described earlier,
together with similar equations for the fields f†, c†. After
iteration to convergence, this provides the midpoint esti- 2

i
2

kR02

uk01u
Sg92

g91
D2 ­2

­t2G cR

mate for the semi-implicit step of length Dj, as
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­fR

­j
5 2

i
2

sgn(k01)
­2

­t2 fR 1 f†
RcR 1 ÏcRz(j, t)

­f†
R

­j
5 1

i
2

sgn(k01)
­2

­t2 f†
R 1 fRc*R 1 Ïc*Rz †(j, t), (7.1)

where the classical undepleted pump cR has been utilized
in the evolution of fR , as well as in the Wigner calculation
for fW . These stochastic fields then correspond to different
operator orderings and different dimensional phase-
spaces. Solving these four additional reference equations
as well as the original four equations can be more efficient
than solving just the (f, f†, c, c†) coupled positive-P equa-
tions alone.

FIG. 1. Squeezing spectrum 1 1 SW(fW , j, 2ff) versus propagationB. Squeezing Spectrum
distance. This is a Wigner simulation of fW coupled to the classical pump

We treat ideal, pulsed, balanced, homodyne detection. field cR with the parameter values Dk 5 0, sgn(k01) 5 1, kR
2 0 5 0, g91 5

g92 , n 5 1012 using 5000 trajectories. The initial conditions are f in aThe quantity needed for calculating the squeezing spec-
vacuum state and kc(0, t)l 5 sech2(t/5), kfLO(t)l 5 sech(t/2).trum is given by the normally ordered and time-ordered

operator expression [27]

SP(f, j, g) 5 minukŜP
u (f, j, g)l

(7.6)
2fn2k: X̂u(2g)X̂u(g) :l, (7.2)

5
2fn minukXu(j, 2g)Xu(j, g)l

ke dt (f†
LOfLO 1 f†f)l

.where

X̂u(t) 5 f̂†(t)f̂LO(t)eiu 1 e2iuf̂†
LO(t)f̂(t), (7.3) In the Wigner representation, the stochastic moments cor-

respond to symmetrical operator ordering resulting in the
stochastic moment kXu(2g)Xu(g)l being non-negative.where u is an experimentally adjustable phase-shift, f̂LO(t)
The squeezing spectrum in the Wigner representation isis a pulsed local oscillator field operator, and f̂(t) is the
thensignal field operator. The squeezing spectrum is optimized

at each frequency by varying the local oscillator phase u.
One can calculate correlation functions like Eq. (7.2) di- SW(f, j, g) 5 21 1

2fn minukXu(j, 2g)Xu(j, g)l
ke dt [ufLOu2 1 ufu2 2 1/(nDt)]l

,
rectly using the positive-P representation as ensemble aver-
ages correspond to normally ordered and time-ordered (7.7)
moments. It is convenient to calculate a normalized squeez-
ing spectrum such that the minimum value of the correla- where Dt21 is the frequency cut-off. The hybrid spectrum
tion function is 21. In the positive-P representation is constructed from

SHYBRID(j, g) 5 kŜP(f, j, g) 2 ŜP(fR , j, g)l
(7.8)kXu(2g)Xu(g)l $ 2

1
2fn KE dt (f†

LOfLO 1 f†f)L, (7.4) 1 SW(fW , j, g).

To illustrate the effectiveness of the algorithm simulation,
where the brackets k l correspond to a stochastic average. results for quantum field propagation in a x(2) waveguide
Now the pulsed squeezing spectrum can be defined as are given for a case where there is a substantial difference

between the choice of SW(fW , j, g) and physically mea-
Su(f, j, g) 5 kŜu(f, j, g)l

(7.5)
sured spectrum Su(f, j, g). Figure 1 shows the squeezing
spectrum SW(fW , j, g) calculated using the Wigner repre-

5
2fnk: X̂u(j, 2g)X̂u(j, g) :l

ke dt (f̂†
LOf̂LO 1 f̂†f̂)l

. sentation. The corresponding DC component is shown in
Fig. 3. The estimated sampling error for the DC component
was much smaller than either the high-frequency compo-
nents or the positive-P sampling errors. The estimated lat-In the positive-P representation, the squeezing spectrum

is then given by (including minimization w.r.t. u) tice error for the DC component was smaller than the
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sampling error. The difference spectrum kŜP(f, j, g) 2
ŜP(fR , j, g)l is shown in Fig. 2 and the corresponding DC
component in Fig. 3. The DC component of the hybrid
spectrum SHYBRID(j, g) and its estimated sampling error
are also given in Fig. 3. For comparison, a positive-P simu-
lation of comparable execution time to the hybrid scheme
was performed and its DC component is given in Fig. 3 as
well. The convergence in the latter case is very poor as a
function of the number of trajectories. Figure 3 shows that
the hybrid scheme is considerably better even when there
is a large difference between the calculated Wigner result
and the full positive-P result. In fact, for the parameters
used here the hybrid scheme can give the correct quantum
statistics with estimated errors many orders of magnitude
less than shown in Fig. 3 by including the pump dispersion
in the evolution of cR . It is often the case that the sampling
error away from DC using the Wigner representation is FIG. 3. DC squeezing versus propagation distance for the Wigner
larger than for a corresponding positive-P simulation. This simulation in Fig. 1, positive-P difference simulation in Fig. 2, hybrid
example illustrates that the reference calculation used in method and positive-P simulation in Fig. 4. The estimated errors for

the Wigner and positive-P difference simulations are not shown here.the stochastic differencing scheme need not have a smaller
However, for the simulations shown here the error estimates for thesampling error for all momentum space but just the sub-
hybrid case are essentially the same as in the positive-P difference simu-space of interest.
lation.

VIII. ENSEMBLE AVERAGES AND MIMD APPROACH

for each expectation value expression evaluated on theEnsemble averages of stochastic quantities requires an
fine lattice.understanding of operator ordering for the physically rele-

In order to estimate errors, the following sub-ensemblevant quantum mechanical averages to be calculated cor-
averages are made. For simple quantities such as intensityrectly. In addition, there is the need for statistical confi-
the data are simply the average over all sub-ensembles ofdence intervals to be inferred in order to ascertain the
a single operator product equivalent and are thereforereliability of the predictions. The calculations are com-
identical to a direct average over all trajectories. For morepleted in a three stage process which is more clearly defined
complicated quantities such as squeezing spectra, thesein the case of a distributed computing model. Initially,
involve combinations of expectation values of differentaverages over each sub-ensemble are made for the stochas-
operator products. In this case, the data are the averagetic equivalent of the operator products of interest. The

plotted data correspond to the mean over all trajectories

FIG. 4. Squeezing spectrum SP(f, j, 2ff) versus propagation distance.
This is a positive-P simulation with the parameter values the same as forFIG. 2. Difference squeezing spectrum versus propagation distance

using the positive-P fields f, fR , c. The initial conditions and parameters f in Fig. 3 using 10,000 trajectories. The initial conditions are the same
as in Fig. 1.are the same as in Fig. 1 except that k02 5 k01.
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over sub-ensembles of functions of sub-ensemble averaged to compute. As a task is completed by node it is sent
another one immediately if there has been less thanoperator product equivalent stochastic quantities. From

this there are two error estimates provided, one based on ÏN tasks successfully allocated. A simple form of fault-
tolerance is included by checking for the number of nodesresults from different lattices and one on the number of

sub-ensembles. Assuming a Gaussian stochastic process, removed from the virtual machine after ÏN sub-ensem-
bles have been allocated. If nodes have been removed thenan estimate of the standard error is given as the square

root of the variance divided by the sample population additional slaves are spawned on a round-robin basis to
the available nodes until ÏN sub-ensembles have beenminus one, i.e., one less than the number of sub-ensembles.

Since the mean is evaluated on the fine lattice, the variance successfully computed. Hence, the limiting speed is the
time taken to initiate and retrieve a single sub-ensemblealso corresponds to those trajectories integrated over the

fine lattice. The absolute value of the difference between from the slowest node in the cluster and output the results.
Therefore, use of such a simple scheduling algorithm re-mean values evaluated over the coarse and fine lattices

provides an estimate of the lattice error. quires a careful choice of the nodes forming the cluster.
A stochastic description of the evolution of fields has an

implicit parallelism. Moreover, using such a representation IX. CONCLUSIONS
allows the expectation values of operators to have an ex-

A family of algorithms for the integration of stochasticplicit correspondence to ensemble averages of stochastic
parabolic partial differential equations has been presented,trajectories. Herein lies the appeal of a divide-and-conquer
together with techniques for improving the discretizationparallel algorithm—each trajectory is independent of each
and sampling errors. An example application involvingother and therefore can be calculated on a remote node
experimentally measurable correlation functions for onewithout any inter-node communication. The general prin-
dimensional propagating quantum fields has been shownciple of divide-and-conquer is implemented with the PVM
in detail. Calculation of correlation functions of interacting(Parallel Virtual Machine) package [14]. It is a message
stochastic fields has been discussed. An efficient approachpassing system designed to allow a heterogeneous network
for overcoming sampling errors with the use of a non-of machines to complete a task in parallel. The initial value
diagonal coherent state representation for studying quan-problem is of the type given by Eq. (1.1). One can associate
tum field propagation in dispersive nonlinear dielectricsa trajectory of a stochastic process for each instance of an
has been presented. It has been shown that it is sometimesinitial condition. These initial conditions may be all the
more efficient to solve the exact positive-P stochastic equa-same or can be described by a probability distribution. As
tions in combination with an exact Wigner representationall trajectories are independently propagated they could
of a related problem. It is expected that these techniquesbe initiated at the same time on different machines or
will be useful for studying higher-order quantum correla-whatever is appropriate for the architecture in use. The
tion functions, as well as other related systems describedensemble is divided into ÏN sub-ensembles which allows
by the use of stochastic partial differential equations.a number of features to be implemented easily. Firstly,

some measure of statistical error from using a finite sample
size can be estimated. Secondly, fault tolerance can be REFERENCES
built into the scheduling algorithm such that one can lose

1. H. Haken, Synergetics, (Springer-Verlag, New York/Berlin, 1978).at most one sub-ensemble of data per node failure.
2. H. Risken, The Fokker-Planck Equation—Methods of Solution andOn an IBM SP2 with a high-performance switch, dedi-

Applications, 2nd Ed. (Springer-Verlag, New York/Berlin, 1989).cated use of the node pool (say M nodes) allows static
3. C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chem-load-balancing so a slave is spawned on each node where

istry and the Natural Sciences, corrected 2nd ed. (Springer-Verlag,
each slave calculates at least gcd(ÏN , M ) sub-ensembles. New York/Berlin, 1990).
The code has also been implemented on shared-memory 4. S. K. Ma, Modern Theory of Critical Phenomena (Benjamin, Elms-
processors and clusters of workstations. In both these cases ford, NY, 1976).
a simple form of dynamic load-balancing using the pool 5. C. W. Gardiner, Quantum Noise (Springer-Verlag, New York/Ber-

lin, 1991).of tasks paradigm for scheduling has been implemented.
6. S. J. Carter, P. D. Drummond, M. D. Reid, and R. M. Shelby, Phys.Each slave process is capable of calculating any number

Rev. Lett. 58, 1841 (1987); P. D. Drummond and S. J. Carter, J. Opt.of the ÏN sub-ensembles. This flexibility is used by the
Soc. Am. B 4, 1565 (1987); P. D. Drummond, R. M. Shelby, S. R.scheduler to take into account the estimated speed of the
Friberg, and Y. Yamamoto, Nature 365, 307 (1993); S. J. Carter and

processor/memory subsystems important for load-balanc- P. D. Drummond, Phys. Rev. Lett. 67, 3757 (1991).
ing in a heterogeneous cluster. Initially, tasks are spawned 7. L. A. Lugiato and I. Marzoli, Phys. Rev. A 52, 4886 (1995).
on each machine’s processor set with each slave passed 8. M. H. Anderson, J. R. Ensher, C. E. Wieman and E. A. Cornell,
a message containing the parameter set for the physical Science 269, 198 (1995); C. C. Bradley, C. A. Sackett, J. J. Tollett,

and R. G. Hulet, Phys. Rev. Lett. 75, 1687 (1995); K. B. Davis,problem, a RNG seed and the number of sub-ensembles



326 WERNER AND DRUMMOND

M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, Numerical Recipes in FORTRAN: The Art of Scientific Computing,
2nd ed. (Cambridge Univ. Press, Cambridge, UK, 1992).D. M. Kurn and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995); K.

Burnett, Contemp. Phys. 37, 1 (1996); K. B. Davis, M. O. Mewes and 18. P. D. Drummond and A. D. Hardman, Eur. Lett. 21, 279 (1993).
W. Ketterle, Appl. Phys. B 60, 155 (1995). 19. M. J. Werner, Phys. Rev. A 54, R2567 (1996); S. R. Friberg, S. Mach-

9. P. D. Drummond and I. K. Mortimer, J. Comput. Phys. 93, 144 (1991). ida, M. J. Werner, A. Levanon, and Takaaki Mukai, Phys. Rev. Lett.
77, 3775 (1996).10. P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differ-

ential Equations (Springer-Verlag, New York/Berlin, 1992). 20. M. J. Werner, M. G. Raymer, M. Beck, and P. D. Drummond, Phys.
Rev. A 52, 4202 (1995).11. P. D. Drummond, Comput. Phys. Commun. 29, 211 (1983).

21. G. Marsaglia, A. Zaman, and W. W. Tsang, Statist. Probab.Lett. 8,12. N. Nagase, SIAM J. Control Optim. 33, 1716 (1995).
35 (1990).13. M. SeeBelberg and F. Petruccione, Comput. Phys. Commun. 74,

22. M. G. Raymer, P. D. Drummond, and S. Carter, Opt. Lett. 16,303 (1993).
1189 (1991).14. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and

23. P. D. Drummond and S. J. Carter, J. Opt. Soc. Am. B 4, 1565 (1987).V. S. Sunderam, PVM: Parallel Virtual Machine a User’s Guide and
Tutorial for Networked Parallel Computing (MIT Press, Cambridge, 24. K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1882 (1969).
MA, 1994). 25. M. J. Werner and H. Risken, Phys. Rev. A 44, 4623 (1991).

15. G. N. Milstein, Theory Probab. Appl. 19, 557 (1974). 26. P. D. Drummond and C. W. Gardiner, J. Phys. A 13, 2353 (1980).
16. K. Ito, Lectures on Stochastic Processes (Tata, Bombay, 1960). 27. P. D. Drummond, S. J. Carter, and R. M. Shelby, Opt. Lett. 14,

373 (1989).17. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,


